плавления бетона

Бетон в Москве

Поставкой бетонных смесей и раствора в Энгельсе занимается множество компаний. Бетон является одним из основных ресурсов используемых на стройке. Расценки на бетон в городе довольно не большие. Например М под стяжки полов стоит в среднем рублей за куб. Узнать все марки бетона и где они используются можно по ссылке Марки бетона и другие параметры. Все цены на бетон по маркам можно посмотреть по ссылке Цены на бетон по РФ.

Плавления бетона завод бетон л

Плавления бетона

По результатам опытов было замечено, что при повышенных температурных показателях прочность бетонного раствора на высшем уровне в первые дни, после схватывания состава, но уже на четвертые сутки прочностные характеристики значительно опускаются. Чтобы улучшить прочность раствора, в него добавляют хлористый кальций, который способен повысить стойкость к повышенным температурным показателям. Жароупорный бетонный раствор основан на портландцементе, с помощью которого смесь из песка, щебня, цемента и воды способна выдерживать повышенные температурные показатели до тысячи градусов по Цельсию и выше.

Помимо основных составляющих бетона и портландцемента, в него также входит алюминиевая добавка мелких фракций и кремниевая. Добавки в растворе позволяют связывать гашеную известь, которая образуется при гидратации цементного камня. Жароупорный строительный материал из смеси цемента, песка, щебня и воды также имеет в своем составе следующие заполнители, которые предотвращают плавление, деформацию и разрушение бетонных изделий даже в момент пожара:.

В зависимости от наполнителей определяется максимальный температурный режим жароупорного бетона. Приготовить такой раствор можно и собственноручно на строительной площадке. На огнестойкость железобетонных конструкций влияют следующие параметры:. Чем меньше плотность используемого материала и чем больше его толщина, тем выше предел огнестойкости, который зависит и от вида опоры для конструкции, и от статической схемы. Конструкции, которые имеют горизонтальное положение, поддаются разрушениям под действием нагрева нижней арматуры, поэтому предел нагрева, прежде всего, зависит от класса арматурной конструкции, способности материала проводить тепло и от размеров слоя защиты.

Горизонтальные конструкции — это балочные плиты, балки, настилы и панели, прогоны и др. Конструкции, которые имеют тонкие стены и поддаются изгибаниям — это настилы, ригели , балки, панели ребристые и пустотелые. Огнестойкость колонн основана на следующих показателях:. В процессе заливки колонн следует обязательно придерживаться инструкции. Колонны разрушаются в результате открытого огненного пламени при снижении прочностных характеристик бетонного раствора и арматурной конструкции.

Ячеистый бетон представляет собой пористый искусственный материал, который используется в строительстве различных зданий и сооружений. В его состав входят минеральные вяжущие и кремнеземистые заполнители. Применяют ячеистый строительный материал из смеси цемента, песка, щебня и воды для теплоизоляции помещений, им утепляют железобетонные плиты и перекрытия, используют легкий бетон для теплозащиты поверхности различных оборудований, трубопроводов, которые используются при температурных режимах свыше четырехсот и даже семисот градусов по Цельсию.

Огнестойкость ячеистого бетона выше, если плотность строительного материала минимальна, таким образом, предельные показатели огнестойкости газоблоков и других изделий из пористого стройматериала повышены. По исследованиям и опытам, которые проводили в шведском и финском учебном заведении, определена прочность ячеистого бетонного состава, которая изменяется при нагревании следующим образом:.

Можно сделать вывод, что предельные значения огнестойкости ячеистых блоков достигают девятисот градусов по Цельсию, когда обычный бетонный состав начинает терять свои основные части прочности при значении от четырехсот до семисот градусов. Таким образом, ячеистый бетон наиболее популярен при возведении зданий и сооружений, где требуются повышенные показатели пожаробезопасности. Бетон представляет собой строительный материал, который обладает отличными прочностными характеристиками, имеет повышенные показатели огнестойкости и при добавлении в состав бетонного раствора специальных наполнителей, приобретает жаростойкость.

На огнестойкость и жаростойкость бетонного раствора влияют различные показатели и факторы, например, материал, который используется в качестве наполнителя, или же конструкции, которые возводят из строительного материала на основе песка, цемента, щебня и воды. Различия между огнестойкостью и жаростойкостью очевидны. Цепная реакция расщепления, разложения и поглощения разъединённых альфа-частиц другими атомами может продолжаться бесконечно; нагрев будет происходить до точки, на которой урановые стержни сделаны оны преимущественно из обогащённого урана начнут деформироваться, а если температура поднимется ещё выше — плавиться.

Обычно ядерный реактор охлаждается водой, но в непредвиденных обстоятельствах стержни расплавятся полностью, превратившись в лаву. Разумеется, такая искусственная лава отличается по составу от природной вулканической субстанции. Урановые стержни состоят из циркониевого корпуса и ядерного топлива — диоксида урана — внутри.

В случае аварии на АЭС, когда температура превышает максимальный допустимый лимит в градусов, стержень начинает деформироваться. Когда же температура достигает отметки в градусов, урановые стержни плавятся, превращаясь в субстанцию, состоящую из урана и циркония. Для того, чтобы сделать ядерный реактор безопаснее, необходимо изучить, как ведёт себя кориум, то есть, смесь, состоящая из ядерного топлива и расплавленных соседствующих материалов.

Исследователи из Аргоннской Национальной лаборатории воссоздали кориум для более детального его изучения. В Интернете можно найти великолепные видеоролики, выложенные в сеть именно этой лабораторией. На этих видео можно заметить, что кориум обладает ещё более низкой вязкостью, что неудивительно, ведь температура этой радиоактивной жижи — свыше градусов, в то время как вулканический расплавленный базальт нагрет в лучшем случае до градусов. Лаборатория использовала больше тонны лавы из диоксида урана в некоторых своих экспериментах, чтобы узнать, как быстро кориум прорвётся через такую преграду, как бетонные пол и стены ядерного реактора.

Оказалось, очень быстро: кориум проплавляет себе путь сквозь бетон со скоростью около 30 см в час. Кроме того, экспериментальным путём исследователи убедились, что охлаждения водой может быть недостаточно: кориум, уничтожая все на своё пути, вырвется наружу в считанные часы. Обе катастрофы на ядерных электростанциях достигли стадии образования кориума. И Чернобыль, и Фукусима столкнулись с этим явлением. В то время как японцы утверждают, что лава не вышла за пределы здания АЭС этот факт, кстати, не доказан , на советской электростанции, несомненно, контроль над ситуацией был потерян полностью.

Существуют фотографии из Чернобыля, на которых видны трёхметровые потёки застывшего кориума. К счастью, температура плавления бетона, состоящего в основном из известняка, выше температуры плавления урановых стержней, в итоге сам процесс плавления бетона и смешивания его с лавой, охлаждает кориум.

Поэтому так много внимания уделяется поиску оптимального состава бетона для постройки ядерных реакторов. Кориумная лава на снимке уже застывшая , которая проплавила себе путь сквозь подвал Чернобыльского ядерного реактора в году. Почему же тогда кориум так опасен? Ведь дальше трех метров за пределы реактора лава продвинуться не в состоянии?

Не следует забывать о составе этой субстанции. Даже когда кориум совершенно застынет, он будет очень и очень радиоактивен еще многие столетия. Измерения радиоактивности и газов, выделяющихся из охлаждённого реактора Фукусимы, показали, что кориум во время катастрофы продвинулся более чем на полметра через заграждающие бетонные стены. На самом деле стадия образования кориума — явление очень редкое, оно возникает только при условии цепной реакции чрезмерного количества высокоактивных изотопов.

Впрочем, существуют теории, что в далеком прошлом на нашей планете имелись естественные ядерные реакторы, которые нагревали Землю за счет расщепления урана, тория и калия. Знак охраны авторского права распространяется только на текст статьи.

Использование материалов сайта без активной индексируемой ссылки на источник запрещено. Для того чтобы отлитый бетонный монолит приобрел прочность, соответствующую его марке, необходимо точно соблюдать технологию заливки, в том числе процедуру гидратации бетона. Но что делать, если необходимо проводить строительные работы в холодный сезон?

Что гласит строительная инструкция по бетонированию о работе при слишком жаркой погоде? Рассмотрим эти вопросы более подробно. Иначе отлитая бетонная конструкция не будет соответствовать требованиям СНИП по прочности. Если вы проводите строительство частного дома или иного сооружения своими руками, воздержитесь от бетонирования при температуре ниже -3 оС. Этот процесс требует применения специального оборудования и четкого соблюдения технологии, чего тяжело достичь в домашних условиях.

Особенность работы в таких условиях состоит в том, что бетон при низких температурах схватывается медленнее. Для набора прочности, указанной в нормативной документации, монолиту необходимо больше времени. Содержащаяся в растворе вода при отрицательных температурах кристаллизуется, вследствие чего в бетоне образуются пустоты и поры, снижающие прочность бетонного изделия.

Кроме того, лед оказывает повышенное давление на стенки бетонной конструкции. В готовом монолите могут образоваться трещины и расколы. Кроме того, замерзшая вода разрывает связи между цементом и заполнителем бетона щебнем, гравием и так далее. Для того чтобы продолжать работы в холодное время года, необходимо пользоваться специальными марками бетона и соответствующими добавками. Они не только улучшат качество монолита, но и позволяет сократить время застывания.

Рассмотрим таблицу, составленную согласно СНИП 3. После окончания укладки бетона на строительной площадке, вследствие воздействия воды на цементный порошок, начинается затвердевание раствора. Жаркая погода ускоряет этот процесс. Позже, после остывания, бетонный монолит начинает сжиматься, чему препятствует возникшая твердая структура.

Как результат — появление усадочных трещин и деформация. Этот процесс может продолжаться вплоть до часов, что крайне отрицательно сказывается на прочности. При проведении работ в жаркое время, целесообразно защищать свежий бетон от воздействия ветра и прямых солнечных лучей.

Кроме того, рекомендуется увлажнять поверхность, способствуя правильной гидратации. Рассматриваемый строительный материал является чрезвычайно огнеупорным, что стало одним из многих факторов, способствующих его популярности.

Кроме того, внешний вид бетонных конструкций при пожаре помогает определить температуру пламени и выбрать подходящий способ тушения пожара:. Разрушение бетона при горении носит, как правило, спокойный характер. Если нагрев продолжается, в структуре монолита возникают трещины, которые постепенно расширяются вплоть до потери конструкцией целостности.

В качестве итога следует отметить, что застывание бетонной строительной смеси при отрицательной либо слишком высокой температуре воздуха должно проходить под строгим контролем. Необходимо постоянно снимать температурные показатели поверхности монолита и корректировать их с помощью описанных выше способов. Более подробно о процессах, связанных с заливкой и затвердеванием бетона можно узнать, ознакомившись с видео в этой статье. Бетон и железобетон режутся кислородным, прутково-кислород-ым, порошково-кислородным копьем, газопорошковой реактивной ггруей, порошково-кислородным резаком, плазменной струей и дугой косвенного действия.

Наиболее освоенной и широко применяемой в СССР является кзка железобетона кислородным копьем рис. Копье представляет собой стальную трубку с наружным диаметром 10—60 мм и длиной 3—6 м с различным поперечным сечением, расто употребляются водогазопроводные трубы ГОСТ —75 F наружным диаметром 10,2 мм и более.

Согласно стандарту водогазопроводные трубы подразделяются на легкие, обыкновенные и усиленные. Для прожигания отверстий в бетоне целесообразно пользоваться усиленными трубами с увеличенной толщиной стенки. Для копья можно использовать трубки некруглых сечений: плоскоовальные ГОСТ —68 , прямоугольные ГОСТ —68 , звездообразные, крестообразные, каплевидные, ромбические и др.

Возможно также применение трубки с заложенными внутрь прутками или обмотанной снаружи проволокой из низкоуглеродистой стали. Такое копье называют прутковым. Резка железобетона прутковым копьем: а — процесс резки, б — копье с сердечником из прутков, б — копье с тремя прихваченными наружными прутками, г — копье с проволочной навивкой; д — копье с сердечником из прутков и с проволочной наьивкой; 1 — трубка, 2 — пруток, 3 — проволочная навивка. При этом рабочий торец копья нагревается сварочной дугой или газокислородным пламенем до температуры горения стали; время нагрева—5—10 с.

Следует различать горение копья в свободном состоянии и горение копья в процессе прожигания или резки. Расход кислорода при свободном горении копья значительно меньше, чем при резке, поэтому и подача его соответственно должна меняться. Ориентировочно для сгорания 1 кг низкоуглеродистой стали требуется дм3 кислорода. Фактический расход кислорода при свободном горении копья составляет до дм3 в зависимости от диаметра и толщины стенки трубки, диаметров стержней и их количества.

Чем полнее обтекает кислородная струя торец копья, тем меньше затрачивается кислорода при свободном горении. При прожигании бетона или железобетона копье с пламенем направляется в изделие с определенной силой. Под действием высокой температуры пламени копья и продольной силы, создаваемой резчиком, бетон плавится и разрушается.

При резке или прожигании железобетона копьем кислород расходуется не только на горение стали, но и на выдувание из области реза продуктов горения копья и плавления бетона. При давлении кислорода в момент зажигания копья более 0,5 ат нагреваемый металл будет охлаждаться из-за сильного перепада давления, что затруднит зажигание копья. Только после воспламенения копья и достаточного углубления его в бетон давление кислорода повышают до рабочего.

В процессе прожигания копье прижимают горящим концом к бетону с достаточно большим усилием; углубляясь в бетон, оно образует приблизительно круглое отверстие. Вследствие испарения воды, а также из-за разности температурных деформаций цементного камня и зерен заполнителя бетон становится непрочным, в нем возникают трещины, рыхлость, выкрашивание частиц, что облегчает плавление и отрыв нерасплавленных частиц.

Расплавленные и оторвавшиеся частицы бетона, продукты горения стали выдуваются наружу кислородом и парами, образуемыми при нагреве бетона, через зазор между копьем и стенками прожигаемого отверстия. Для лучшего удаления расплавленной и рыхлой массы из области реза необходимо периодически совершать копьем возвратно-поступательные и возвратно-вращательные движения.

Величина продольного усилия должна быть максимально возможной для резчика. В то же время чрезмерное усилие, в особенности при большой толщине железобетона, когда нагретое докрасна копье на 1—2 м и более углублено в железобетон, может вызвать искривление копья и изменить направление образуемого отверстия.

Ориентировочно величина усилия прижатия копья должна составлять от 5 до 10 кгс, а при прожигании глубоких отверстий, когда необходимо преодолевать сопротивление застывающих шлаков, усилие прижатия должно достигать 10—50 кгс. Данные по прожиганию отверстий в железобетоне в горизонтальном положении, полученные в МИСИ, приведены в табл. С повышением толщины прожигаемого бетона диаметры трубы и прутков необходимо увеличивать. При прожигании отверстий кислородным копьем изменение свойств и снижение прочности бетона от нагрева происходят в радиусе 30— мм пропорционально толщине прожигаемого бетона.

По сравнению с пневмоинструментом копье прожигает отверстие более чем в 4 раза быстрее, стоимость работ при этом значительно ниже. Порошковое копье отличается от пруткового тем, что на место реза подается железный порошок или смесь его с каким-либо другим например, алюминиевым , при сгорании порошка выделяется дополнительное тепло.

Подача порошка флюса выполняется автоматизированным устройством, как в установках для кислородно-флюсовой резки. Это усложняет оборудование для резки порошковым копьем. Резак для кислородно-флюсовой резки сталей может быть использован и для резки неметаллов. Однако пользоваться им удобно лишь при разделительной резке бетона толщиной до мм. Разделительную резку можно также осуществлять прутковым и порошковым копьями последовательным образованием ряда отверстий с последующим разрушением перемычек механическим способом.

Резка реактивной газовой струей находит применение для прожигания отверстий в горных породах и железобетоне. Эта струя нагревает поверхность обрабатываемого тела, а при подаче воды оно разрушается и частицы выносятся газами из зоны реза. Хороших результатов достигают при прожигании отверстий реактивной струей.

Прожигание отверстий диаметром до мм в железобетонных плитах успешно осуществляется угольной дугой косвенного действия. Для этого применяют угольные электроды диаметром 50— мм и силу тока — А. Необходимость пользоваться светофильтром для глаз снижает эффективность резки угольной дугой. Применение термической резки бетона и железобетона необходимо для образования проемов в стенах и перекрытиях, круглых небольшого диаметра сквозных отверстий, срезки старых фундаментов для постройки новых под более мощное оборудование и в других случаях — вместо трудоемкой и дорогостоящей механичен ской резки, сопровождающейся вибрациями, разрушениями и сильным шумом.

Резка копьем по сравнению с другими видами является наиболее универсальной, позволяющей резать бетон и железобетон толщиной до 4 м в различных пространственных положениях как при ремонтных работах, так и в новом строительстве.

При этом оборудование для резки относительно несложно. Одним из важных критериев набора бетоном требуемой прочности прочность на сжатие является температура его твердения. Несоблюдения температурного режима на строительной площадке может вылиться в значительное увеличение сроков сдачи объекта или, что значительно хуже, в изъяны будущей конструкции. Именно поэтому еще на этапе планирования монолитных работ необходимо четко уяснить, при какой температуре заливают бетон. Этот показатель обозначается R28 и принимается равным единице при данных условиях.

В других ситуациях прочность принимает дробное значение. Данные в таблице приведены для лабораторных условий и марок цементов, имеющих нормальную скорость твердения. В реальных же условиях и температура меняется в значительных диапазонах, и раствор может иметь разные характеристики. Поэтому рекомендуется немного увеличивать сроки выдерживания. Тогда бетон затвердеет в нужной степени за достаточно короткий срок. Особенно это актуально в первые дни, когда происходит схватывание.

Если в это время вода в растворе кристализуется, то лед попросту разорвет образовавшиеся связи цемента с наполнителем и конечное изделие получится крайне хрупким. В этом случае залитый бетон необходимо накрывать защитной пленкой и периодически поливать его поверхность водой. Для измерения температуры можно использовать бесконтактный термометр пирометр , например, такой, как на видео:. Создание защиты железобетонных конструкций от воздействия агрессивных сред способствует увеличению их долговечности и является одним из путей повышения экономической эффективности строительства.

Наряду с известными способами облицовки фасадов керамической и каменной плиткой, известны процессы декоративной отделки строительных изделий путем поверхностного оплавления. В качестве источников энергии для оплавления применяют газовые горелки, электрическую дугу, плазму. В результате плазменного оплавления на поверхности бетона образуется декоративный слой, одновременно являющийся защитным слоем от агрессивного воздействия окружающей среды. Создавать такие покрытия можно даже с помощью ручных плазмотронов или в некоторых случаях ацетиленовых горелок, что расширяет зону применения отделки.

Плазменное оплавление поверхности бетона целесообразно применять в условиях, когда другие виды отделки менее доступны и в условиях повышенной агрессивности окружающей среды, что характерно для зданий агропромышленного комплекса.

ПРОНИКАЮЩАЯ ГИДРОИЗОЛЯЦИЯ ДЛЯ БЕТОНА КУПИТЬ В ПЕРМИ

Температурные режимы, воздействующие на бетонный состав, в пределах — градусов влекут за собой разрушение структуры и уменьшение прочностных характеристик цементного камня. Когда на градуснике отметка достигает пятисот пятидесяти градусов по Цельсию, имеющиеся в бетоне песок и щебень подвергаются растрескиванию, если превышает градусов — бетонные конструкции полностью разрушаются. Повышение температурных показателей непосредственно влияет на прочность бетонного состава.

Таким образом, при укладке и застывании раствора повышение отметки на градуснике может повлиять на прочность бетона, возраст которого начинается от семи суток и более. Происходит это из-за ускоренной гидратации, в результате чего достигается несовершенная физическая структура с большим количеством незаполненных пор. По результатам опытов было замечено, что при повышенных температурных показателях прочность бетонного раствора на высшем уровне в первые дни, после схватывания состава, но уже на четвертые сутки прочностные характеристики значительно опускаются.

Чтобы улучшить прочность раствора, в него добавляют хлористый кальций, который способен повысить стойкость к повышенным температурным показателям. Жароупорный бетонный раствор основан на портландцементе, с помощью которого смесь из песка, щебня, цемента и воды способна выдерживать повышенные температурные показатели до тысячи градусов по Цельсию и выше.

Помимо основных составляющих бетона и портландцемента, в него также входит алюминиевая добавка мелких фракций и кремниевая. Добавки в растворе позволяют связывать гашеную известь, которая образуется при гидратации цементного камня. Жароупорный строительный материал из смеси цемента, песка, щебня и воды также имеет в своем составе следующие заполнители, которые предотвращают плавление, деформацию и разрушение бетонных изделий даже в момент пожара:. В зависимости от наполнителей определяется максимальный температурный режим жароупорного бетона.

Приготовить такой раствор можно и собственноручно на строительной площадке. Чем меньше плотность используемого материала и чем больше его толщина, тем выше предел огнестойкости, который зависит и от вида опоры для конструкции, и от статической схемы. Конструкции, которые имеют горизонтальное положение, поддаются разрушениям под действием нагрева нижней арматуры, поэтому предел нагрева, прежде всего, зависит от класса арматурной конструкции, способности материала проводить тепло и от размеров слоя защиты.

Горизонтальные конструкции — это балочные плиты, балки, настилы и панели, прогоны и др. Конструкции, которые имеют тонкие стены и поддаются изгибаниям — это настилы, ригели, балки, панели ребристые и пустотелые. Огнестойкость колонн основана на следующих показателях:. В процессе заливки колонн следует обязательно придерживаться инструкции.

Колонны разрушаются в результате открытого огненного пламени при снижении прочностных характеристик бетонного раствора и арматурной конструкции. Ячеистый бетон представляет собой пористый искусственный материал, который используется в строительстве различных зданий и сооружений. В его состав входят минеральные вяжущие и кремнеземистые заполнители.

Применяют ячеистый строительный материал из смеси цемента, песка, щебня и воды для теплоизоляции помещений, им утепляют железобетонные плиты и перекрытия, используют легкий бетон для теплозащиты поверхности различных оборудований, трубопроводов, которые используются при температурных режимах свыше четырехсот и даже семисот градусов по Цельсию. Огнестойкость ячеистого бетона выше, если плотность строительного материала минимальна, таким образом, предельные показатели огнестойкости газоблоков и других изделий из пористого стройматериала повышены.

По исследованиям и опытам, которые проводили в шведском и финском учебном заведении, определена прочность ячеистого бетонного состава, которая изменяется при нагревании следующим образом:. Можно сделать вывод, что предельные значения огнестойкости ячеистых блоков достигают девятисот градусов по Цельсию, когда обычный бетонный состав начинает терять свои основные части прочности при значении от четырехсот до семисот градусов. Таким образом, ячеистый бетон наиболее популярен при возведении зданий и сооружений, где требуются повышенные показатели пожаробезопасности.

Бетон представляет собой строительный материал, который обладает отличными прочностными характеристиками, имеет повышенные показатели огнестойкости и при добавлении в состав бетонного раствора специальных наполнителей, приобретает жаростойкость. На огнестойкость и жаростойкость бетонного раствора влияют различные показатели и факторы, например, материал, который используется в качестве наполнителя, или же конструкции, которые возводят из строительного материала на основе песка, цемента, щебня и воды.

Различия между огнестойкостью и жаростойкостью очевидны. В первом случае бетонные конструкции имеют возможность противостоять повышенным температурным показателям в течение непродолжительного времени, а при жаростойкости строительного материала, бетонные конструкции сохраняют прочностные характеристики долговременно. Результаты эксперимента с кориумной лавой. Самое интересное в научных исследованиях — это сделать открытие совсем не в той сфере, в которой работал.

Таким открытием является радиоактивная лава, опасность которой обнаружилась при исследовании аварий на Чернобыльской АЭС и на Фукусиме. Казалось бы, какая вообще может быть связь между лавой и ядерной энергетикой? Тем не менее, эта связь есть. Не с искусственной лавой, которую люди производят, преимущественно, ради искусства, а с той радиоактивной субстанцией, при встрече с которой можно смело прощаться с жизнью.

Происхождение такой лавы преимущественно случайно и последствия её появления исключительно трагические. Чтобы понять, о чём идёт речь, необходимо вернуться к атомным электростанциям. Объектом нашего внимания является ни что иное как расплавление ядерных топливных элементов реактора. Это происходит, когда реакции расщепления ядра, происходящей в реакторе, становится невозможно обеспечить должное охлаждение и начинает нагреваться всё, включая урановый стержень и бетонный пол самого здания АЭС.

Во время катастрофы, такой, как в Чернобыле или на Фукусиме, становится невозможным охлаждение урановых стержней, и жар начинает с высокой скоростью распространяться по станции. Два наиболее важных первичных изотопа, которые используются в реакции расщепления ядра, это уран и плутоний Расщепление становится возможным с помощью поглощения нейтроном изотопов с ещё более коротким периодом полураспада таких как цезий и стронций , и, собственно, является источником тепла и самой сущностью работы ядерного реактора.

Цепная реакция расщепления, разложения и поглощения разъединённых альфа-частиц другими атомами может продолжаться бесконечно; нагрев будет происходить до точки, на которой урановые стержни сделаны оны преимущественно из обогащённого урана начнут деформироваться, а если температура поднимется ещё выше — плавиться.

Обычно ядерный реактор охлаждается водой, но в непредвиденных обстоятельствах стержни расплавятся полностью, превратившись в лаву. Разумеется, такая искусственная лава отличается по составу от природной вулканической субстанции. Урановые стержни состоят из циркониевого корпуса и ядерного топлива — диоксида урана — внутри. В случае аварии на АЭС, когда температура превышает максимальный допустимый лимит в градусов, стержень начинает деформироваться.

Когда же температура достигает отметки в градусов, урановые стержни плавятся, превращаясь в субстанцию, состоящую из урана и циркония. Для того, чтобы сделать ядерный реактор безопаснее, необходимо изучить, как ведёт себя кориум, то есть, смесь, состоящая из ядерного топлива и расплавленных соседствующих материалов. Исследователи из Аргоннской Национальной лаборатории воссоздали кориум для более детального его изучения. В Интернете можно найти великолепные видеоролики, выложенные в сеть именно этой лабораторией.

На этих видео можно заметить, что кориум обладает ещё более низкой вязкостью, что неудивительно, ведь температура этой радиоактивной жижи — свыше градусов, в то время как вулканический расплавленный базальт нагрет в лучшем случае до градусов.

Лаборатория использовала больше тонны лавы из диоксида урана в некоторых своих экспериментах, чтобы узнать, как быстро кориум прорвётся через такую преграду, как бетонные пол и стены ядерного реактора. Оказалось, очень быстро: кориум проплавляет себе путь сквозь бетон со скоростью около 30 см в час. Кроме того, экспериментальным путём исследователи убедились, что охлаждения водой может быть недостаточно: кориум, уничтожая все на своё пути, вырвется наружу в считанные часы. Обе катастрофы на ядерных электростанциях достигли стадии образования кориума.

И Чернобыль, и Фукусима столкнулись с этим явлением. В то время как японцы утверждают, что лава не вышла за пределы здания АЭС этот факт, кстати, не доказан , на советской электростанции, несомненно, контроль над ситуацией был потерян полностью. Существуют фотографии из Чернобыля, на которых видны трёхметровые потёки застывшего кориума. К счастью, температура плавления бетона, состоящего в основном из известняка, выше температуры плавления урановых стержней, в итоге сам процесс плавления бетона и смешивания его с лавой, охлаждает кориум.

Поэтому так много внимания уделяется поиску оптимального состава бетона для постройки ядерных реакторов. Кориумная лава на снимке уже застывшая , которая проплавила себе путь сквозь подвал Чернобыльского ядерного реактора в году. Почему же тогда кориум так опасен? Ведь дальше трех метров за пределы реактора лава продвинуться не в состоянии? Не следует забывать о составе этой субстанции. Даже когда кориум совершенно застынет, он будет очень и очень радиоактивен еще многие столетия.

Измерения радиоактивности и газов, выделяющихся из охлаждённого реактора Фукусимы, показали, что кориум во время катастрофы продвинулся более чем на полметра через заграждающие бетонные стены. На самом деле стадия образования кориума — явление очень редкое, оно возникает только при условии цепной реакции чрезмерного количества высокоактивных изотопов. Впрочем, существуют теории, что в далеком прошлом на нашей планете имелись естественные ядерные реакторы, которые нагревали Землю за счет расщепления урана, тория и калия.

Бетон и железобетон режутся кислородным, прутково-кислород-ым, порошково-кислородным копьем, газопорошковой реактивной ггруей, порошково-кислородным резаком, плазменной струей и дугой косвенного действия. Наиболее освоенной и широко применяемой в СССР является кзка железобетона кислородным копьем рис. Копье представляет собой стальную трубку с наружным диаметром 10—60 мм и длиной 3—6 м с различным поперечным сечением, расто употребляются водогазопроводные трубы ГОСТ —75 F наружным диаметром 10,2 мм и более.

Согласно стандарту водогазопроводные трубы подразделяются на легкие, обыкновенные и усиленные. Для прожигания отверстий в бетоне целесообразно пользоваться усиленными трубами с увеличенной толщиной стенки. Для копья можно использовать трубки некруглых сечений: плоскоовальные ГОСТ —68 , прямоугольные ГОСТ —68 , звездообразные, крестообразные, каплевидные, ромбические и др.

Возможно также применение трубки с заложенными внутрь прутками или обмотанной снаружи проволокой из низкоуглеродистой стали. Такое копье называют прутковым. Резка железобетона прутковым копьем: а — процесс резки, б — копье с сердечником из прутков, б — копье с тремя прихваченными наружными прутками, г — копье с проволочной навивкой; д — копье с сердечником из прутков и с проволочной наьивкой; 1 — трубка, 2 — пруток, 3 — проволочная навивка.

При этом рабочий торец копья нагревается сварочной дугой или газокислородным пламенем до температуры горения стали; время нагрева—5—10 с. Следует различать горение копья в свободном состоянии и горение копья в процессе прожигания или резки. Расход кислорода при свободном горении копья значительно меньше, чем при резке, поэтому и подача его соответственно должна меняться.

Ориентировочно для сгорания 1 кг низкоуглеродистой стали требуется дм3 кислорода. Защитный слой должен быть плотным, без каких-либо трещин или изъянов, в противном случае назначение его не оправдывается. Трещины в защитном слое открывают доступ воздуха непосредственно к арматуре, что вызывает образование плёнки ржавчины, сопровождающееся увеличением её объёма. Последнее вызывает растягивающие усилия в бетоне, растрескивание и разрушение защитного слоя, со всеми отрицательными последствиями для долговечности железобетонной конструкции.

Под огнестойкостью понимают сопротивляемость бетона кратковременному действию огня при пожаре. Под жаростойкостью понимают стойкость бетона при длительном и постоянном действии высоких температур в условиях эксплуатации тепловых агрегатов жароупорный бетон. Бетон относится к числу огнестойких материалов.

Вследствие сравнительно малой теплопроводности бетона кратковременное воздействие высоких температур не успевает вызвать значительного нагревания бетона и находящейся под защитным слоем арматуры. Значительно опаснее поливка сильно разогретого бетона холодной водой при тушении пожара , она неизбежно вызывает образование трещин, разрушение защитного слоя и обнажение арматуры при продолжающемся действии высоких температур.

При дальнейшем повышении температуры разрушаются и другие структурные элементы обычного бетона. Для этого в бетон необходимо вводить тонкомолотые кремнезёмистые или алюмокремнезёмистые добавки, связывающие свободный гидроксид кальция, выделяющийся при гидратации цемента. В качестве же заполнителей применяют материалы, обладающие достаточной степенью огнеупорности и термостойкости, например хромистый железняк, шамот, базальт, андезит, отвальный доменный шлак, туфы и кирпичный щебень.

Максимальная температура, выдерживаемая конструкциями, зависит от огнеупорности и термостойкости заполнителей и тонкомолотых добавок. Тонкомолотые добавки для связывания гидроксида кальция в этом случае не требуются. Цементный камень в бетоне как компонент обычно менее стойкий, нежели каменные заполнители, при воздействии на бетон химически агрессивных агентов разрушается в первую очередь.

Все причины коррозии бетона на портландцементе могут быть сведены в следующие основные группы:. Материал из Википедии — свободной энциклопедии. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 25 февраля ; проверки требует 1 правка. Для улучшения этой статьи желательно :.

Викифицировать статью.

Тронут) заделка дупла в яблоне цементным раствором спасибо. Очень

По исследованиям и опытам, которые проводили в шведском и финском учебном заведении, определена прочность ячеистого бетонного состава, которая изменяется при нагревании следующим образом:. Можно сделать вывод, что предельные значения огнестойкости ячеистых блоков достигают девятисот градусов по Цельсию, когда обычный бетонный состав начинает терять свои основные части прочности при значении от четырехсот до семисот градусов.

Таким образом, ячеистый бетон наиболее популярен при возведении зданий и сооружений, где требуются повышенные показатели пожаробезопасности. Бетон представляет собой строительный материал, который обладает отличными прочностными характеристиками, имеет повышенные показатели огнестойкости и при добавлении в состав бетонного раствора специальных наполнителей, приобретает жаростойкость. На огнестойкость и жаростойкость бетонного раствора влияют различные показатели и факторы, например, материал, который используется в качестве наполнителя, или же конструкции, которые возводят из строительного материала на основе песка, цемента, щебня и воды.

Различия между огнестойкостью и жаростойкостью очевидны. В первом случае бетонные конструкции имеют возможность противостоять повышенным температурным показателям в течение непродолжительного времени, а при жаростойкости строительного материала, бетонные конструкции сохраняют прочностные характеристики долговременно.

Результаты эксперимента с кориумной лавой. Самое интересное в научных исследованиях — это сделать открытие совсем не в той сфере, в которой работал. Таким открытием является радиоактивная лава, опасность которой обнаружилась при исследовании аварий на Чернобыльской АЭС и на Фукусиме.

Казалось бы, какая вообще может быть связь между лавой и ядерной энергетикой? Тем не менее, эта связь есть. Не с искусственной лавой, которую люди производят, преимущественно, ради искусства, а с той радиоактивной субстанцией, при встрече с которой можно смело прощаться с жизнью. Происхождение такой лавы преимущественно случайно и последствия её появления исключительно трагические. Чтобы понять, о чём идёт речь, необходимо вернуться к атомным электростанциям. Объектом нашего внимания является ни что иное как расплавление ядерных топливных элементов реактора.

Это происходит, когда реакции расщепления ядра, происходящей в реакторе, становится невозможно обеспечить должное охлаждение и начинает нагреваться всё, включая урановый стержень и бетонный пол самого здания АЭС. Во время катастрофы, такой, как в Чернобыле или на Фукусиме, становится невозможным охлаждение урановых стержней, и жар начинает с высокой скоростью распространяться по станции. Два наиболее важных первичных изотопа, которые используются в реакции расщепления ядра, это уран и плутоний Расщепление становится возможным с помощью поглощения нейтроном изотопов с ещё более коротким периодом полураспада таких как цезий и стронций , и, собственно, является источником тепла и самой сущностью работы ядерного реактора.

Цепная реакция расщепления, разложения и поглощения разъединённых альфа-частиц другими атомами может продолжаться бесконечно; нагрев будет происходить до точки, на которой урановые стержни сделаны оны преимущественно из обогащённого урана начнут деформироваться, а если температура поднимется ещё выше — плавиться. Обычно ядерный реактор охлаждается водой, но в непредвиденных обстоятельствах стержни расплавятся полностью, превратившись в лаву. Разумеется, такая искусственная лава отличается по составу от природной вулканической субстанции.

Урановые стержни состоят из циркониевого корпуса и ядерного топлива — диоксида урана — внутри. В случае аварии на АЭС, когда температура превышает максимальный допустимый лимит в градусов, стержень начинает деформироваться. Когда же температура достигает отметки в градусов, урановые стержни плавятся, превращаясь в субстанцию, состоящую из урана и циркония.

Для того, чтобы сделать ядерный реактор безопаснее, необходимо изучить, как ведёт себя кориум, то есть, смесь, состоящая из ядерного топлива и расплавленных соседствующих материалов. Исследователи из Аргоннской Национальной лаборатории воссоздали кориум для более детального его изучения. В Интернете можно найти великолепные видеоролики, выложенные в сеть именно этой лабораторией.

На этих видео можно заметить, что кориум обладает ещё более низкой вязкостью, что неудивительно, ведь температура этой радиоактивной жижи — свыше градусов, в то время как вулканический расплавленный базальт нагрет в лучшем случае до градусов. Лаборатория использовала больше тонны лавы из диоксида урана в некоторых своих экспериментах, чтобы узнать, как быстро кориум прорвётся через такую преграду, как бетонные пол и стены ядерного реактора.

Оказалось, очень быстро: кориум проплавляет себе путь сквозь бетон со скоростью около 30 см в час. Кроме того, экспериментальным путём исследователи убедились, что охлаждения водой может быть недостаточно: кориум, уничтожая все на своё пути, вырвется наружу в считанные часы. Обе катастрофы на ядерных электростанциях достигли стадии образования кориума.

И Чернобыль, и Фукусима столкнулись с этим явлением. В то время как японцы утверждают, что лава не вышла за пределы здания АЭС этот факт, кстати, не доказан , на советской электростанции, несомненно, контроль над ситуацией был потерян полностью. Существуют фотографии из Чернобыля, на которых видны трёхметровые потёки застывшего кориума.

К счастью, температура плавления бетона, состоящего в основном из известняка, выше температуры плавления урановых стержней, в итоге сам процесс плавления бетона и смешивания его с лавой, охлаждает кориум. Поэтому так много внимания уделяется поиску оптимального состава бетона для постройки ядерных реакторов. Кориумная лава на снимке уже застывшая , которая проплавила себе путь сквозь подвал Чернобыльского ядерного реактора в году.

Почему же тогда кориум так опасен? Ведь дальше трех метров за пределы реактора лава продвинуться не в состоянии? Не следует забывать о составе этой субстанции. Даже когда кориум совершенно застынет, он будет очень и очень радиоактивен еще многие столетия.

Измерения радиоактивности и газов, выделяющихся из охлаждённого реактора Фукусимы, показали, что кориум во время катастрофы продвинулся более чем на полметра через заграждающие бетонные стены. На самом деле стадия образования кориума — явление очень редкое, оно возникает только при условии цепной реакции чрезмерного количества высокоактивных изотопов.

Впрочем, существуют теории, что в далеком прошлом на нашей планете имелись естественные ядерные реакторы, которые нагревали Землю за счет расщепления урана, тория и калия. Бетон и железобетон режутся кислородным, прутково-кислород-ым, порошково-кислородным копьем, газопорошковой реактивной ггруей, порошково-кислородным резаком, плазменной струей и дугой косвенного действия.

Наиболее освоенной и широко применяемой в СССР является кзка железобетона кислородным копьем рис. Копье представляет собой стальную трубку с наружным диаметром 10—60 мм и длиной 3—6 м с различным поперечным сечением, расто употребляются водогазопроводные трубы ГОСТ —75 F наружным диаметром 10,2 мм и более. Согласно стандарту водогазопроводные трубы подразделяются на легкие, обыкновенные и усиленные.

Для прожигания отверстий в бетоне целесообразно пользоваться усиленными трубами с увеличенной толщиной стенки. Для копья можно использовать трубки некруглых сечений: плоскоовальные ГОСТ —68 , прямоугольные ГОСТ —68 , звездообразные, крестообразные, каплевидные, ромбические и др.

Возможно также применение трубки с заложенными внутрь прутками или обмотанной снаружи проволокой из низкоуглеродистой стали. Такое копье называют прутковым. Резка железобетона прутковым копьем: а — процесс резки, б — копье с сердечником из прутков, б — копье с тремя прихваченными наружными прутками, г — копье с проволочной навивкой; д — копье с сердечником из прутков и с проволочной наьивкой; 1 — трубка, 2 — пруток, 3 — проволочная навивка.

При этом рабочий торец копья нагревается сварочной дугой или газокислородным пламенем до температуры горения стали; время нагрева—5—10 с. Следует различать горение копья в свободном состоянии и горение копья в процессе прожигания или резки. Расход кислорода при свободном горении копья значительно меньше, чем при резке, поэтому и подача его соответственно должна меняться. Ориентировочно для сгорания 1 кг низкоуглеродистой стали требуется дм3 кислорода.

Фактический расход кислорода при свободном горении копья составляет до дм3 в зависимости от диаметра и толщины стенки трубки, диаметров стержней и их количества. Чем полнее обтекает кислородная струя торец копья, тем меньше затрачивается кислорода при свободном горении.

При прожигании бетона или железобетона копье с пламенем направляется в изделие с определенной силой. Под действием высокой температуры пламени копья и продольной силы, создаваемой резчиком, бетон плавится и разрушается. При резке или прожигании железобетона копьем кислород расходуется не только на горение стали, но и на выдувание из области реза продуктов горения копья и плавления бетона. При давлении кислорода в момент зажигания копья более 0,5 ат нагреваемый металл будет охлаждаться из-за сильного перепада давления, что затруднит зажигание копья.

Только после воспламенения копья и достаточного углубления его в бетон давление кислорода повышают до рабочего. В процессе прожигания копье прижимают горящим концом к бетону с достаточно большим усилием; углубляясь в бетон, оно образует приблизительно круглое отверстие.

Вследствие испарения воды, а также из-за разности температурных деформаций цементного камня и зерен заполнителя бетон становится непрочным, в нем возникают трещины, рыхлость, выкрашивание частиц, что облегчает плавление и отрыв нерасплавленных частиц. Расплавленные и оторвавшиеся частицы бетона, продукты горения стали выдуваются наружу кислородом и парами, образуемыми при нагреве бетона, через зазор между копьем и стенками прожигаемого отверстия. Для лучшего удаления расплавленной и рыхлой массы из области реза необходимо периодически совершать копьем возвратно-поступательные и возвратно-вращательные движения.

Величина продольного усилия должна быть максимально возможной для резчика. В то же время чрезмерное усилие, в особенности при большой толщине железобетона, когда нагретое докрасна копье на 1—2 м и более углублено в железобетон, может вызвать искривление копья и изменить направление образуемого отверстия.

Ориентировочно величина усилия прижатия копья должна составлять от 5 до 10 кгс, а при прожигании глубоких отверстий, когда необходимо преодолевать сопротивление застывающих шлаков, усилие прижатия должно достигать 10—50 кгс. Данные по прожиганию отверстий в железобетоне в горизонтальном положении, полученные в МИСИ, приведены в табл.

С повышением толщины прожигаемого бетона диаметры трубы и прутков необходимо увеличивать. При прожигании отверстий кислородным копьем изменение свойств и снижение прочности бетона от нагрева происходят в радиусе 30— мм пропорционально толщине прожигаемого бетона.

По сравнению с пневмоинструментом копье прожигает отверстие более чем в 4 раза быстрее, стоимость работ при этом значительно ниже. Порошковое копье отличается от пруткового тем, что на место реза подается железный порошок или смесь его с каким-либо другим например, алюминиевым , при сгорании порошка выделяется дополнительное тепло. Подача порошка флюса выполняется автоматизированным устройством, как в установках для кислородно-флюсовой резки.

Это усложняет оборудование для резки порошковым копьем. Резак для кислородно-флюсовой резки сталей может быть использован и для резки неметаллов. Однако пользоваться им удобно лишь при разделительной резке бетона толщиной до мм.

Разделительную резку можно также осуществлять прутковым и порошковым копьями последовательным образованием ряда отверстий с последующим разрушением перемычек механическим способом. В ГОСТе диапазон температур окружающей среды при изготовлении не определен. Укладка смеси при более низких температурах приводит к замедлению процесса схватывания и твердения продукта.

Если запланировано твердение бетонного продукта при более высоких температурах, вводится повышающий коэффициент на расход цемента:. Представление о влиянии температуры на набор прочности бетона обеспечивает следующий график:.

Если же этот показатель ниже, то используют различные технологические приемы. Один из них — прогрев смеси, который необходимо продолжать до набора бетоном критической прочности. Значение критической прочности устанавливают в проектной документации. Для прогрева бетона в тонкостенных конструкциях эффективна технология пароподогрева.

Для ее осуществления в опалубке оставляют отверстия, в которые пропускают пар. Ее сочетание с благоприятной влажностью обеспечивает ускорение твердения материала. За 2 дня он может набрать такой уровень прочности, для достижения которого в нормальных условиях понадобится не менее недели. Бетон боится не только низких, но и слишком высоких температур.

Для понижения температуры приготовленной смеси используют охлажденную воду или воду, смешиваемую со льдом. В этом случае необходимо обеспечить герметичность и водонепроницаемость опалубки, чтобы не допустить потерь влаги. Этот строительный материал относится к огнеупорным и пожаробезопасным, что повышает его популярность в гражданском и промышленном строительстве.

При пожаре по внешнему виду бетона можно определить примерную температуру пламени и подобрать лучший способ его тушения:. Бетон под воздействием огня разрушается медленно, постепенно. Если пожар длится долго, то в структуре бетонного элемента появляются трещины. Купить бетон в Рощино. Бетон доставка : бетон М в количестве 15 кубов, с доставкой в Рощино. Нужна стоимость бетона за куб. Купить бетон в Сосново. Бетон доставка : Сколько будет стоить доставка бетона в Сосново 8.

Какие бетонные заводы находятся в непосредственной близости от Сосново. Купить бетон в Красном селе. Бетон доставка : Необходимо рассчитать стоимость бетона с доставкой от 6 до 8м3 бетона в красное село. Оплата за бетон будет по безналичному расчету.

Купить бетон в Гатчине. Бетон доставка : Какова стоимость карьерного песка средней зернистости и бетона за куб с бетонного завода? Нужно доставить 20м3 бетона. Купить бетон в Волосово. Бетон доставка : Сколько стоит куб бетона с доставкой в Волосово.

Надо 22м. Купить бетон во Всеволожске. Бетон доставка : Сколько будет стоить песок карьерный 30 м3 и доставка 20 м3 бетона. Бетон необходим с завода. Доставка во Всеволожск по Дороги Жизни в сторону Романовки. Мне еще надо засыпать овраг, может купить супесь, что это такое.? Бетон доставка : На объект в Тосно необходимо 70 м3 бетона. Желательно марку бетона не ниже М Интересует стоимость бетона и доставки до объекта.

Купить бетон в Луге. Купить бетон в Кировске. Купить бетон в Пушкене. Бетон доставка : Под фундамент дома необходимо несколько машин бетона доставка будет в выходные. Доставку нужно будет разбить на 10 кубов бетона, 13 кубов бетона и 6 кубов бетона. Рассчитайте стоимость бетона и стоимость доставки до объекта в Пушкин. Купить бетон в Колпино. Бетон доставка : На строительную площадку в Колпино требуется 70 м3 бетона М Сколько будет стоить бетон с завода.

Пришлите полный прайс лист на все марки бетона. Купить бетон в Ломоносове. Бетон доставка : Рассчитайте цену за куб бетона М с доставкой в Ломоносов и отгрузкой бетона с бетонного завода. Какая скидка будет при заказе от кубов? Возможно ли оплата по безналу с отсрочкой или в кредит. Купить бетон в Парголове.

Бетон доставка : Нужен срочно бетон недорого с бетонного завода с доставкой до объекта в Парголово. Доставить нужно тремя миксерами в каждом будет по 10 кубов бетона. Еще из дополнительного оборудования нужен автобетононасос.

Подача бетона будет на расстоянии 25 метров. Дайте коммерческое предложение. Купить бетон в Белоострове. Бетон доставка : Я представитель крупной строительной компании. Занимаемся строительством загородных домов. Нужен постоянный договор на поставку бетона и изготовление бетона по нашей рецептуре бетона. Пришлите коммерческое предложение или договор от ближайшего бетонного завода на поставку бетона в Белоостров.

Купить бетон Кронштадт. Сколько стоит бетон, условия доставки В30 гидротехнического бетона до объекта в Кронштадте? Какая стоимость доставки бетона? Купить бетон в Колтушах. Бетон доставка : С завода в Колтушах нужен бетон B Нужна цена за куб бетона.

Просчитайте стоимость доставки. Везем бетон в частный сектор приблизительно 20 км от города. Бетон и железобетон режутся кислородным, прутково-кислород-ым, порошково-кислородным копьем, газопорошковой реактивной ггруей, порошково-кислородным резаком, плазменной струей и дугой косвенного действия.

Наиболее освоенной и широко применяемой в СССР является кзка железобетона кислородным копьем рис. Копье представляет собой стальную трубку с наружным диаметром 10—60 мм и длиной 3—6 м с различным поперечным сечением, расто употребляются водогазопроводные трубы ГОСТ —75 F наружным диаметром 10,2 мм и более. Согласно стандарту водогазопроводные трубы подразделяются на легкие, обыкновенные и усиленные.

Для прожигания отверстий в бетоне целесообразно пользоваться усиленными трубами с увеличенной толщиной стенки. Для копья можно использовать трубки некруглых сечений: плоскоовальные ГОСТ —68 , прямоугольные ГОСТ —68 , звездообразные, крестообразные, каплевидные, ромбические и др. Возможно также применение трубки с заложенными внутрь прутками или обмотанной снаружи проволокой из низкоуглеродистой стали. Такое копье называют прутковым. Резка железобетона прутковым копьем: а — процесс резки, б — копье с сердечником из прутков, б — копье с тремя прихваченными наружными прутками, г — копье с проволочной навивкой; д — копье с сердечником из прутков и с проволочной наьивкой; 1 — трубка, 2 — пруток, 3 — проволочная навивка.

При этом рабочий торец копья нагревается сварочной дугой или газокислородным пламенем до температуры горения стали; время нагрева—5—10 с. Следует различать горение копья в свободном состоянии и горение копья в процессе прожигания или резки. Расход кислорода при свободном горении копья значительно меньше, чем при резке, поэтому и подача его соответственно должна меняться.

Ориентировочно для сгорания 1 кг низкоуглеродистой стали требуется дм3 кислорода. Фактический расход кислорода при свободном горении копья составляет до дм3 в зависимости от диаметра и толщины стенки трубки, диаметров стержней и их количества. Чем полнее обтекает кислородная струя торец копья, тем меньше затрачивается кислорода при свободном горении. При прожигании бетона или железобетона копье с пламенем направляется в изделие с определенной силой.

Под действием высокой температуры пламени копья и продольной силы, создаваемой резчиком, бетон плавится и разрушается. При резке или прожигании железобетона копьем кислород расходуется не только на горение стали, но и на выдувание из области реза продуктов горения копья и плавления бетона. При давлении кислорода в момент зажигания копья более 0,5 ат нагреваемый металл будет охлаждаться из-за сильного перепада давления, что затруднит зажигание копья.

Только после воспламенения копья и достаточного углубления его в бетон давление кислорода повышают до рабочего. В процессе прожигания копье прижимают горящим концом к бетону с достаточно большим усилием; углубляясь в бетон, оно образует приблизительно круглое отверстие.

Вследствие испарения воды, а также из-за разности температурных деформаций цементного камня и зерен заполнителя бетон становится непрочным, в нем возникают трещины, рыхлость, выкрашивание частиц, что облегчает плавление и отрыв нерасплавленных частиц.

Расплавленные и оторвавшиеся частицы бетона, продукты горения стали выдуваются наружу кислородом и парами, образуемыми при нагреве бетона, через зазор между копьем и стенками прожигаемого отверстия. Для лучшего удаления расплавленной и рыхлой массы из области реза необходимо периодически совершать копьем возвратно-поступательные и возвратно-вращательные движения. Величина продольного усилия должна быть максимально возможной для резчика.

В то же время чрезмерное усилие, в особенности при большой толщине железобетона, когда нагретое докрасна копье на 1—2 м и более углублено в железобетон, может вызвать искривление копья и изменить направление образуемого отверстия. Ориентировочно величина усилия прижатия копья должна составлять от 5 до 10 кгс, а при прожигании глубоких отверстий, когда необходимо преодолевать сопротивление застывающих шлаков, усилие прижатия должно достигать 10—50 кгс.

Данные по прожиганию отверстий в железобетоне в горизонтальном положении, полученные в МИСИ, приведены в табл. С повышением толщины прожигаемого бетона диаметры трубы и прутков необходимо увеличивать. При прожигании отверстий кислородным копьем изменение свойств и снижение прочности бетона от нагрева происходят в радиусе 30— мм пропорционально толщине прожигаемого бетона. По сравнению с пневмоинструментом копье прожигает отверстие более чем в 4 раза быстрее, стоимость работ при этом значительно ниже.

Порошковое копье отличается от пруткового тем, что на место реза подается железный порошок или смесь его с каким-либо другим например, алюминиевым , при сгорании порошка выделяется дополнительное тепло. Подача порошка флюса выполняется автоматизированным устройством, как в установках для кислородно-флюсовой резки. Это усложняет оборудование для резки порошковым копьем. Резак для кислородно-флюсовой резки сталей может быть использован и для резки неметаллов. Однако пользоваться им удобно лишь при разделительной резке бетона толщиной до мм.

Разделительную резку можно также осуществлять прутковым и порошковым копьями последовательным образованием ряда отверстий с последующим разрушением перемычек механическим способом. Резка реактивной газовой струей находит применение для прожигания отверстий в горных породах и железобетоне. Эта струя нагревает поверхность обрабатываемого тела, а при подаче воды оно разрушается и частицы выносятся газами из зоны реза.

Что могу купить бетон в спб с доставкой цена отличный